Atieh Khodadadi, M.Sc. Atieh-Khodadadi

Atieh Khodadadi, M.Sc.

  • Karlsruhe Institute of Technology
    Institute AIFB
    KIT-Campus South
    Kaiserstr. 89
    D-76133 Karlsruhe

Bio

Atieh Khodadadi is a PhD student at the Institute of Applied Informatics and Formal Description Methods, Karlsruhe Institute of Technology, Germany. Her research is focused on the utilization of digital twins to enhance energy efficiency in manufacturing systems, with a particular focus on energy, modeling and simulation, and data mining.

Research Interests

• Modeling and Simulation • Data-driven Simulation • Data Analytics • Digital Twins • Energy Efficiency • Process Mining

Publications


2024
Multi-flow Process Mining for Comprehensive Simulation Model Discovery
Khodadadi, A.; Lazarova-Molnar, S.
2024. ACM - Proceedings of the 14th International Conference on Information Communication and Management, Association for Computing Machinery (ACM)
Essential Data Requirements for Industrial Energy Efficiency with Digital Twins: A Case Study Analysis
Khodadadi, A.; Lazarova-Molnar, S.
2024. The 7th International Conference on Emerging Data and Industry
2023
Towards Sustainable Manufacturing: Digital Twins for Enhanced Energy Efficiency
Khodadadi, A.; Lazarova-Molnar, S.
2023, July 3. 11th EUROSIM Simulation Congress (2023), Amsterdam, Netherlands, July 3–5, 2023
Improving Diagnostics with Deep Forest Applied to Electronic Health Records
Khodadadi, A.; Ghanbari Bousejin, N.; Molaei, S.; Kumar Chauhan, V.; Zhu, T.; Clifton, D. A.
2023. Sensors, 23 (14), Art.-Nr.: 6571. doi:10.3390/s23146571
2021
Classification of audio codecs with variable bit-rates using deep-learning methods
Khodadadi, A.; Molaei, S.; Teimouri, M.; Zare, H.
2021. Digital Signal Processing, 110, Article no: 102952. doi:10.1016/j.dsp.2020.102952
2020
Classification of Audio Codecs with Variable Bit- Rates
Khodadadi, A.; Teimouri, M.
2020. 10th International Conference on Computer and Knowledge Engineering (ICCKE 2020), 050–054, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ICCKE50421.2020.9303637
2019
Dataset for file fragment classification of audio file formats
Khodadadi, A.; Teimouri, M.
2019. BMC Research Notes, 12, Article no: 819. doi:10.1186/s13104-019-4856-1