Advanced Topics in Digital Twins
- Type: Lecture (V)
- Chair: Systems, Data, Simulation & Energy
- Semester: SS 2026
-
Time:
Wed 2026-04-22
09:45 - 11:15, weekly
05.20 1C-01
05.20 Kollegiengebäude am Kronenplatz
Wed 2026-04-29
09:45 - 11:15, weekly
05.20 1C-01
05.20 Kollegiengebäude am Kronenplatz
Wed 2026-05-06
09:45 - 11:15, weekly
05.20 1C-01
05.20 Kollegiengebäude am Kronenplatz
Wed 2026-05-13
09:45 - 11:15, weekly
05.20 1C-01
05.20 Kollegiengebäude am Kronenplatz
Wed 2026-05-20
09:45 - 11:15, weekly
05.20 1C-01
05.20 Kollegiengebäude am Kronenplatz
Wed 2026-06-03
09:45 - 11:15, weekly
05.20 1C-01
05.20 Kollegiengebäude am Kronenplatz
Wed 2026-06-10
09:45 - 11:15, weekly
05.20 1C-01
05.20 Kollegiengebäude am Kronenplatz
Wed 2026-06-17
09:45 - 11:15, weekly
05.20 1C-01
05.20 Kollegiengebäude am Kronenplatz
Wed 2026-06-24
09:45 - 11:15, weekly
05.20 1C-01
05.20 Kollegiengebäude am Kronenplatz
Wed 2026-07-01
09:45 - 11:15, weekly
05.20 1C-01
05.20 Kollegiengebäude am Kronenplatz
Wed 2026-07-08
09:45 - 11:15, weekly
05.20 1C-01
05.20 Kollegiengebäude am Kronenplatz
Wed 2026-07-15
09:45 - 11:15, weekly
05.20 1C-01
05.20 Kollegiengebäude am Kronenplatz
Wed 2026-07-22
09:45 - 11:15, weekly
05.20 1C-01
05.20 Kollegiengebäude am Kronenplatz
Wed 2026-07-29
09:45 - 11:15, weekly
05.20 1C-01
05.20 Kollegiengebäude am Kronenplatz
- Lecturer: Prof. Dr.-Ing. Sanja Lazarova-Molnar
- SWS: 2
- Lv-No.: 2511104
| Content | This lecture series provides an overview of current research in Digital Twins, delivered by members of the SYDSEN research group working on active research topics in the field. Each lecture focuses on a specific topic and covers state-of-the-art methods as well as practical applications. Topics include:
By the end of the course, students will understand how Digital Twins are applied in different domains. They will be able to analyze research approaches, identify limitations, and assess the practical relevance of current work. Students will also be able to recognize emerging research directions and innovation opportunities. Prerequisites Basic programming experience and foundational knowledge in mathematics, modeling, and data-driven methods. Learning Objectives
Form of Instruction Lectures covering theoretical foundations and research contributions, complemented by practical sessions including demonstrations, case studies, and tool-based exercises. A detailed course plan will be provided before the start of the semester. Competence Certificate The examination will be offered as a written exam (60 minutes). |
| Language of instruction | English |